Integrated and Community-driven approach to Ground Water Management

Experiences from SuGWM project (Supported by EU & BfdW)

2011-16

R.V. Rama Mohan CWS, Hyderabad

www.cwsy.org/sugwm

CWS in ground water management

- started with science-based social regulations in 2003 and demonstrated participatory approach to GW management
- Refined our approach based on field learnings:
 - top down regulations lead to more illegal drilling and proliferation
 - recognized institutional gaps at grass-roots (PRI and functional committees are not effective)
 - studied and responded to energy issues in agriculture
 - recognised the potential of traditional water sharing practices
 - integrated approach water supply, sanitation and irrigation

Ground water is the major source for drinking and irrigation

40-80% of wells dry up post December every year

Over-use in agriculture leading to failure of drinking water sources

Electricity supply to agriculture is poor in quality but free

37% of bores and 58% of open wells dried up in project GPs (Nov-Dec 2011)

Integrated approach to GW mgt.

- Sustainable Water supply
- Sanitation services and infrastructure
- Irrigation equity and efficiency
- Aquifer recharge
- PHM and social regulations
- Local water governance

Sustaining water supply systems

- most of the schemes are GW based and decentralized, with abundant physical infrastructure
- lack of local institutions to manage and effective O & M
- tail-end deprivation aggravated by lower yields from source bore wells

3 novel elements:

- 1. correcting inequalities through system renovation / augmentation
- 2. O & M by GPs, conditional and mandatory water cess
- 3. Ensuring 'source sustainability' through DAR

Direct Aquifer Recharge

 Conventional approaches focus on infiltration through top soil and could recharge 10-12% to GW

Limits of storage on surface already reached

 climate change - increased rainfall intensities with longer dry spells

- DAR has the potential of augmeting GW recharge by 40-50% of run-off
- Slug test simplified and technical manual developed

Dry well rejuvenation

 302 open wells (58%) and 422 bore wells (37%) dried up in 2011

Most of the open wells are join wells having 5-12 farmers sharing water

185 wells deepened or converting as recharge wells

348 wells (132 OWs and 216 Bws) got rejuvenated

Participatory Hydrological Monitoring

Rain gauges and water level indicators deployed

Directed to measure the impact of 'source sustainability measures' and educating farmers on crop planning

Traditional Joint Wells – Water sharing

- -The project promotes groundwater sharing to achieve equity without drilling new wells
- -Enumeration of 520 joint wells by GW Committees
- -MI Census reveals decline of traditional sharing groups to 44,722 in AP (2006-07)

Study Findings:

Group wells in Andhra Pradesh			
Type of	1993 - 94	2000 - 01	2006 - 07
well*			
Dug well	120078	91369	32830
Shallow	15644	22554	6770
tube wells			
Deep tube	2197	4818	5122
wells			
Total	137919	118741	44722

^{*}Total farmers surveyed: 2884

^{*}water-sharing farmers: 1190 (41%)

^{*} farmers having individual wells: 601 (21%)

^{*}Total farmers practising only rain-fed cultivation: 1093

Shared open well with individual motors for pumping

Micro irrigation usage among 1190 sharing farmers in project GPs

Energy issues in agriculture

- -Low supply quality and frequent failures
- -Frequent motor dry-runs and burnouts
- -Electricity accidents and deaths
- -Over-loaded DTRs due to unauthorized Tapping
- -Discoms and farmers lack motivation for energy efficiency
- Implemented measures of improving PF, dryrun prevention and DTR upgradation

Sanitation

- Augmented water supply removed hurdles
- 70% of 3117 HHs already have defunct toilets
- People renovated 500+ units and 2500+ HHs stopped open defecation

- Invented methods of reusing old on-line drip lateral pipes

- costs Rs.7,000 to 10,000 against a new drip system at Rs. 50,000 per acre

Conclusion

Recharging deeper aquifers coupled with efficient use of water revived GW based agriculture. More research needed on efficient and low-cost methods for different formations.

Local institutions function effectively when technical backup available. Institutional innovations for basin-wide approach to GW management (EX: Erft Verband).

Energy as a key regulatory tool for GW management not fully realized. 'Free electricity units' instead of 'free hours of supply' integrates energy and water use efficiency.